Good Programming Practice 12.1

Even though certain functions are implicitly virtual
because of a declaration made higher in the class
hierarchy, explicitly declare these functions virtual at
every level of the class hierarchy to promote program
clarity.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



Software Engineering Observation 12.6

When a derived class chooses not to override a virtual
function from its base class, the derived class simply
inherits its base class’s virtual function
implementation.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



Invoking a virtual Function Through a
Base-Class Pointer or Referernce

« |f a program invokes a virtual function
thr_ouct;h a base-class pointer to a derived-class
object (e.g., shapePtr->draw())ora
basSe-class reference to a derived-class object
(e.g., shapeRef. dr_aw()?, the program will
choose the correct derived-class function
dz/nam_lcall (i.e., at execution time) based on
?‘ e obfect type—not the pointer or reference
V€.

— Known as dynamic binding or late binding.




Invoking a virtual Function Through an
Object’s Name

« When a virtual function is called by
referencing a specific object by name and
using the dot member-selection operator (e.g.,
squareObject.draw()), the function
Invocation Is re-solved at compile time (this Is
called static binding) and the virtual
function that Is called is the one defined for (or
Inherited by) the class of that particular
object—this IS natpolymorphlc behavior.

« Dynamic binding with virtual functions
occurs onlv off noiriters(and. as we’ll soon




Virtual Functions and Virtual
Destructors (cont.)

virtual Functions in the Commiss1onEmp loyee Hierarchy

 Figures 12.4-12.5 are the headers for classes o
commissionEmployee and BasePlusCommissionEmployee,
respectively.

*  We modified these to declare each class’s earnings and print
member functions as virtual (lines 29-30 of Fig. 12.4 and lines 19—
20 of Fig. 12.5).

« Because functions earnings and print are virtual in class
CommissionEmployee, class
BasePlusCommissionEmployee’s earnings and print
functions override class CommissionEmployee’s.

* In addition, class BasePlusCommissionEmployee’s earnings
and print functions are declare override.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



% Error-Prevention Tip 12.1
=

| Apply C++11°s override keyword to every overridden

<i> function in a derived-class. This forces the compiler to
check whether the base class has a member function with
the same name and parameter list (1.e., the same
signature). If not, the compiler generates an error.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



I // Fig. 12.4: CommissionEmployee.h

2 // CommissionEmployee class header declares earnings and print as virtual.
3 #ifndef

4 #define

5

6 #include <string> // C++ standard string class

7

8 «class CommissionEmployee

9 {

10 public:

11 CommissionEmployee( const std::string &, const std::string &,
12 const std::string &, double = , double = )

13

14 void setFirstName( const std::string & ); // set first name
15 std::string getFirstName() const; // return first name

16

17 void setlLastName( const std::string & ); // set last name

I8 std::string getLastName() const; // return last name

19
20 void setSocialSecurityNumber( const std::string & ); // set SSN
21 std::string getSocialSecurityNumber() const; // return SSN
22

Fig. 12.4 | CommissionEmployee class header declares earnings and print
as virtual.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



23 void setGrossSales( double ); // set gross sales amount

24 double getGrossSales() const; // return gross sales amount
25

26 void setCommissionRate( double ); // set commission rate
27 double getCommissionRate() const; // return commission rate
28

29 virtual double earnings() const; // calculate earnings

30 virtual void print() const; // print object

31 private:

32 std::string firstName;

33 std::string lastName;

34 std: :string socialSecurityNumber;

35 double grossSales; // gross weekly sales

36 double commissionRate; // commission percentage

37 }; // end class CommissionEmployee

38

39 #endif

Fig. 12.4 | CommissionEmployee class header declares earnings and print
as virtual.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



OoOo~NOTUnNHh WN=

10
11
12
13
14
15
16
17
18

// Fig. 12.5: BasePlusCommissionEmployee.h

// BasePlusCommissionEmployee class derived from class
// CommissionEmployee.

#1fndef

#define

#include <string> // C++ standard string class
#include // CommissionEmployee class declaration

class BasePlusCommissionEmployee : public CommissionEmployee
{
public:
BasePlusCommissionEmployee( const std::string &, const std::string &,
const std::string &, double = , double = , double = );

void setBaseSalary( double ); // set base salary
double getBaseSalary() const; // return base salary

Fig.

12.5 | BasePTusCommissionEmployee class header declares earnings

and print functions as virtual and override. (Part | of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



19 virtual double earnings() const override; // calculate earnings

20 virtual void print() const override; // print object
21 private:

22 double baseSalary; // base salary

23 }; // end class BasePlusCommissionEmployee

24

25 #endif

Fig. 12.5 | BasePTusCommissionEmployee class header declares earnings
and print functions as virtual and override. (Part 2 of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



Virtual Functions and Virtual
Destructors (cont.)

We modified Fig. 12.1 to create the program of Fig. 12.6.

Lines 40-51 of Fig. 12.6 demonstrate again that a CommissionEmployee
pointer aimed at a CommissionEmployee object can be used to invoke
CommissionEmployee functionality, and a
BasePlusCommissionEmployee pointer aimed at a
BasePlusCommissionEmployee object can be used to invoke
BasePlusCommissionEmployee functionality.

Line 54 aims base-class pointer commissionEmployeePtr at derived-
class object basePlusCommissionEmployee.

Note that when line 61 invokes member function print off the base-class
pointer, the derived-class BasePlusCommissionEmployee’s print
member function is invoked, so line 61 outputs different text than line 53 does
in Fig. 12.1 (when member function print was not declared virtual).

We see that declaring a member function virtual causes the program to
dynamically determine which function to invoke based on the type of object to
which the handle points, rather than on the type of the handle.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



OoOo~Nonhnnbh WN =

10
11
12
13
14
15
16
17
18
19
20
21

// Fig. 12.6: figl2_06.cpp

// Introducing polymorphism, virtual functions and dynamic binding.

#include <iostream>
#include <iomanip>
#include

#include

using namespace std;

int main()

{

// create base-class object
CommissionEmployee commissionEmployee(

7 H L] H ) ;

// create base-class pointer
CommissionEmployee *commissionEmployeePtr = nullptr;

// create derived-class object
BasePlusCommissionEmployee basePlusCommissionEmployee(

7 tl ] H bl ) ;

Fig. 12.6 | Demonstrating polymorphism by invoking a derived-class virtual
function via a base-class pointer to a derived-class object. (Part | of 5.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

// create derived-class pointer
BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = nullptr;

// set floating-point output formatting
cout << fixed << setprecision( );

// output objects using static binding
cout <<
<< ;
commissionEmployee.print(); // static binding
cout << :
basePlusCommissionEmployee.print(); // static binding

// output objects using dynamic binding
cout <<
<< ;

// aim base-class pointer at base-class object and print
commissionEmployeePtr = &commissionEmployee;
cout <<

<<

<< ;
commissionEmployeePtr->print(); // invokes base-class print

Fig. 12.6 | Demonstrating polymorphism by invoking a derived-class virtual
function via a base-class pointer to a derived-class object. (Part 2 of 5.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



45

46 // aim derived-class pointer at derived-class object and print
47 basePlusCommissionEmployeePtr = &basePlusCommissionEmployee;
48 cout <<

49 <<

50 << ;

51 basePlusCommissionEmployeePtr->print(); // invokes derived-class print
52

53 // aim base-class pointer at derived-class object and print

54 commissionEmployeePtr = &basePlusCommissionEmployee;

55 cout <<

56 <<

37 << ;

58

59 // polymorphism; invokes BasePlusCommissionEmployee's print;
60 // base-class pointer to derived-class object

61 commissionEmployeePtr->print();

62 cout << endl;

63 1} // end main

Fig. 12.6 | Demonstrating polymorphism by invoking a derived-class virtual
function via a base-class pointer to a derived-class object. (Part 3 of 5.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



Invoking print function on base-class and derived-class
objects with static binding

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00

commission rate: 0.06

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Invoking print function on base-class and derived-class
objects with dynamic binding

Calling virtual function print with base-class pointer
to base-class object invokes base-class print function:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00

commission rate: 0.06

Fig. 12.6 | Demonstrating polymorphism by invoking a derived-class virtual
function via a base-class pointer to a derived-class object. (Part 4 of 5.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



