
©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



12.3.4 Virtual Functions and Virtual 

Destructors (cont.) 

Invoking a virtual Function Through a 
Base-Class Pointer or Reference 
• If a program invokes a virtual function 

through a base-class pointer to a derived-class 
object (e.g., shapePtr->draw()) or a 
base-class reference to a derived-class object 
(e.g., shapeRef.draw()), the program will 
choose the correct derived-class function 
dynamically (i.e., at execution time) based on 
the object type—not the pointer or reference 
type. 
– Known as dynamic binding or late binding. 

©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



12.3.4 Virtual Functions and Virtual 

Destructors (cont.) 

Invoking a virtual Function Through an 
Object’s Name 

• When a virtual function is called by 
referencing a specific object by name and 
using the dot member-selection operator (e.g., 
squareObject.draw()), the function 
invocation is re-solved at compile time (this is 
called static binding) and the virtual 
function that is called is the one defined for (or 
inherited by) the class of that particular 
object—this is not polymorphic behavior. 

• Dynamic binding with virtual functions 
occurs only off pointers (and, as we’ll soon 
see, references). 

©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



12.3.4 Virtual Functions and Virtual 

Destructors (cont.) 

virtual Functions in the CommissionEmployee Hierarchy 

• Figures 12.4–12.5 are the headers for classes 
CommissionEmployee and BasePlusCommissionEmployee, 
respectively. 

• We modified these to declare each class’s earnings and print 
member functions as virtual (lines 29–30 of Fig. 12.4 and lines 19–
20 of Fig. 12.5). 

• Because functions earnings and print are virtual in class 
CommissionEmployee, class 
BasePlusCommissionEmployee’s earnings and print 
functions override class CommissionEmployee’s. 

• In addition, class BasePlusCommissionEmployee’s earnings 
and print functions are declare override. 

©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



12.3.4 Virtual Functions and Virtual 

Destructors (cont.) 

• We modified Fig. 12.1 to create the program of Fig. 12.6. 

• Lines 40–51 of Fig. 12.6 demonstrate again that a CommissionEmployee 
pointer aimed at a CommissionEmployee object can be used to invoke 
CommissionEmployee functionality, and a 
BasePlusCommissionEmployee pointer aimed at a 
BasePlusCommissionEmployee object can be used to invoke 
BasePlusCommissionEmployee functionality. 

• Line 54 aims base-class pointer commissionEmployeePtr at derived-
class object basePlusCommissionEmployee. 

• Note that when line 61 invokes member function print off the base-class 
pointer, the derived-class BasePlusCommissionEmployee’s print 
member function is invoked, so line 61 outputs different text than line 53 does 
in Fig. 12.1 (when member function print was not declared virtual). 

• We see that declaring a member function virtual causes the program to 
dynamically determine which function to invoke based on the type of object to 
which the handle points, rather than on the type of the handle. 

©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 


